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SUMMARY

Since their popularization in the late 1970s and early 1980s, multigrid methods have been a central tool
in the numerical solution of the linear and nonlinear systems that arise from the discretization of many
PDEs. In this paper, we present a local Fourier analysis (LFA, or local mode analysis) framework for
analyzing the complementarity between relaxation and coarse-grid correction within multigrid solvers
for systems of PDEs. Important features of this analysis framework include the treatment of arbitrary
finite-element approximation subspaces, leading to discretizations with staggered grids, and overlapping
multiplicative Schwarz smoothers. The resulting tools are demonstrated for the Stokes, curl–curl, and
grad–div equations. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

First envisioned as a technique for solving Poisson-type problems with optimal complexity, multi-
grid and other multilevel algorithms have become the methods of choice for solving the matrix
equations that arise in a wide variety of applications. In this paper, we are concerned with the
design and analysis of multigrid algorithms for the solution of discretized systems of partial differ-
ential equations. While general principles exist that can aid in developing multigrid techniques
for an application area, the optimal choices for its components are often difficult to determine
beforehand. Many approaches to multigrid theory have been investigated in the last 30 years (see,
for example, [1–4]); among these, the technique of local Fourier analysis (LFA, or local mode
analysis), first introduced in [5], has remained very successful, providing accurate predictions of
performance for a variety of problems, including systems of PDEs.

The primary advantage of LFA is that it allows quantitative prediction of multigrid conver-
gence factors under reasonable assumptions. The word, local, in LFA indicates a focus on the
character of an operator in the interior of its domain, where it is assumed to be represented by a
constant discretization stencil. The Fourier symbols of such operators can easily be computed. A
further insight in [6] was that all of the components in a multigrid method can be analyzed in this
fashion, leading to a block-diagonal representation in a Fourier basis. LFA helped, for example, in
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the understanding of SOR as a smoother for moderately anisotropic and high-dimensional prob-
lems [7] and the solution of the biharmonic equation with efficiency similar to that of Poisson [8].
Recent advances in LFA include LFA for high-dimensional problems [9], for multigrid as a
preconditioner [10], for triangular and hexagonal meshes [11, 12], optimal control problems [13],
and discontinuous Galerkin discretizations [14]. The LFA monograph and related software of
Wienands and Joppich [8] focus on LFA for collocated discretizations, providing an excellent tool
for experimenting with Fourier analysis.

In this paper, we present a framework for performing the LFA for state-of-the-art finite-element
(FE) discretizations of systems of PDEs. In particular, we show that the LFA ansatz is still valid
when using overlapping multiplicative smoothers, such as the one proposed in [15], for the grad–
div and curl–curl equations, and in [16, 17] for the Stokes equations. Analysis of the additive
versions of these smoothers was conducted in [18, 19]; however, this form of analysis does not
extend to cover the multiplicative case. LFA for overlapping multiplicative smoothers has been,
to our knowledge, performed in only two cases, for the staggered finite-difference discretization
of the Stokes and Navier–Stokes equations [20], and for a mixed FE discretization of Poisson’s
equation [21]. We also apply this analysis to the well-known multigrid solvers for the grad–div,
curl–curl, and Stokes equations, providing quantitative predictions of the performance of multigrid
methods based on these smoothers, in contrast to the non-predictive proofs of convergence offered
in [15, 22]. In the case of the Stokes equations, in particular, quantitative estimates have been
notably missing from the literature [23].

The remainder of this paper is organized as follows. First, in Section 2, we provide some
background on the motivating PDE systems for this work. LFA smoothing analysis is discussed
in Section 3, with a focus on the treatment of overlapping multiplicative smoothers. A detailed
example is presented in Section 4. Section 5 presents two-grid LFA, focusing on the issue of
multigrid grid transfers for staggered discretizations. Finally, Section 6 presents the application of
these techniques to appropriate discretizations of the Stokes, grad–div, and curl–curl equations.
There, we focus on the impact of the choice of transfer operators and on the choice of smoother
and under-relaxation parameters on the two-grid LFA convergence.

2. MULTIGRID AND FES FOR PDE SYSTEMS

The discretization of systems of PDEs must be done with care, to avoid the introduction of unstable
modes in the resulting discrete system. For FE discretizations, this typically results in choosing
different FE subspaces for different components of the system, to satisfy known inf–sup conditions,
leading to the use of Raviart–Thomas, Nédélec, or Taylor–Hood elements, for example. For a
thorough treatment of these issues in the FE context, see [24, 25].

We shall refer to the FE discretizations that we treat here collectively as ‘staggered discretiza-
tions’, indicating that the nodes associated with the discrete degrees of freedom are not aligned
on the same grid for each component of the PDE system. The techniques developed here are
applicable to arbitrary staggered discretizations of systems of PDEs, including the ‘trivial’ case of
a collocated discretization.

2.1. Multigrid for systems of equations

Many standard discretizations of systems of PDEs (including those described below) do not
guarantee that the resulting matrices are diagonally dominant (or even that they are definite) either
because of the properties of the continuum operators themselves or because of necessary constraints
on the discretizations. In these cases, expensive relaxation techniques may be used to reestablish
effective multigrid convergence. Unfortunately, these relaxation techniques are no longer algebraic
black boxes, such as the Jacobi and Gauss–Seidel iterations. Instead, the details of these techniques
are determined by those of the underlying PDEs.

A first indication for the appropriate choice of relaxation method for a system of equations can
be derived from the system’s determinant. Interestingly, the determinant of the discrete operator
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may also give us valuable information about the stability of the discretizations used for a system.
The direct relation between effectiveness of smoothing and the determinant of the discrete system
is by means of the h-ellipticity concept [26, 27]. For unstable discretizations, which give rise to
unphysical oscillations in the numerical solutions, there is no chance that we can set up efficient
local, i.e. pointwise, smoothing methods.

An obvious choice in the case of strong off-diagonal operators in the differential system (also
indicated by the determinant) is collective smoothing: all unknowns in the system at a certain grid
point or grid cell are updated simultaneously. While the use of these smoothers leads to efficient
multigrid approaches for systems of PDEs, collective relaxation is not the only possible approach.
The main alternative is the use of distributive smoothers [26, 28, 29], which take their name from
a distribution operation; the discrete (or continuum) equations are transformed by right matrix
multiplication into a block triangular matrix that is amenable to pointwise relaxation. Simple
pointwise relaxation is performed on this block triangular system and, then, the resulting update
is distributed (based on the transformation matrix) back to the original matrix problem.

While distributed smoothers are often found to be more efficient than overlapping smoothers [29],
their applicability is limited by the need to find an effective distribution matrix; this is often difficult
to do for problems with unstructured grids or variable coefficients. Thus, distributed relaxation may
be difficult to implement in a general and purely algebraic fashion, as would be necessary for use
within an algebraic multigrid iteration. Furthermore, the proper treatment of boundary conditions
in distributive relaxation may not be trivial, as typically the operator of the preconditioned system
is of higher order than the original operator, thus requiring additional (possible non-physical)
boundary conditions within smoothing. Substantial effort has however been put into successfully
extending the distributed smoother of Hiptmair [28] to algebraic multigrid algorithms for the
curl–curl equation [30–32]. In this paper, we focus exclusively on collective relaxation approaches.

2.2. Discretizing systems of PDEs

As a first pair of examples, we consider the gradient–divergence (grad–div) and curl–curl equations,

−∇(a∇ ·U)+U=F in �, (1)

and

∇×(a∇×U)+U=F in �, (2)

with parameter a>0, where � is an open domain in Rd . These operators appear frequently in the
formulation of mathematical models in physics and engineering, particularly for problems related
to electro-magnetics or fluid and solid mechanics (see, for example, [15, 29, 33] for more details).

In the FE framework, face elements, such as the Raviart–Thomas elements, have been proposed
for accurate discretization of (1) [34], whereas edge elements, such as the Nédélec elements [35],
are commonly used for (2), see Figure 1. The difficulty in achieving efficient multigrid treatment
of the resulting discrete linear systems comes from the fact that the eigenspace associated with
the minimal eigenvalue of the discrete operator contains many eigenvectors (for large enough
parameter a). For Equation (1), this arises because any divergence-free vector is an eigenvector
corresponding to this minimal eigenvalue, while a similar difficulty occurs with curl-free vectors
in (2). In both cases, these components can be arbitrarily oscillatory and can neither be reduced
by standard (pointwise) smoothing procedures, nor be well represented on coarse grids [15].

A remedy for (1) proposed in [36] builds upon local div-free functions and their orthogonal
complements in the FE space. In [37], a multigrid preconditioner was presented for a discretization
with the lowest-order Raviart–Thomas FE spaces on triangles. A distributive smoothing technique
in multigrid to handle the troublesome div-free components was proposed in [38]. These techniques
were extended for the curl–curl equations in [15, 33]. Here, we will quantitatively analyze the
multiplicative collective smoother introduced in [15], known as the AFW smoother. This smoother
can be motivated by thinking about the different treatment given by the grad–div or curl–curl
operator to components of U that look like gradients and those that look like curls. As the dominant
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(i,j) (i,j)

Figure 1. Placement of unknowns with Raviart–Thomas FE for grad–div operator (left), and Nédélec edge
elements for curl–curl (right).

part of these operators does not act on one component of the solution, it is important that the
relaxation technique accurately resolves these components on all scales.

The Stokes equations are central to the simulation of certain viscous fluid-flow problems. They
are represented by a saddle point problem,

−�U+∇P =F, (3)

∇ ·U = 0, (4)

for velocity vector, U , and scalar pressure, P , of a viscous fluid. The weak form of the
Stokes equations is found by multiplying by test functions, V and Q, and integrating by parts.
Writing this system in terms of the bilinear forms, a11(U,V)=∫�∑d

i=1(∇Ui ) ·(∇Vi )d� and
a12(V,P)=−∫�(∇ ·V)P d�, we have

a11(U,V)+a12(V,P)=
∫

�
F ·V d� (5)

a21(U,Q)= 0, (6)

with a12(·, ·)=a21(·, ·), and vector-valued functions U,V :Rd→Rd . Notice that U and P lie in
different spaces; typically, U ∈V ⊂ (H1(�))d , whereas P ∈W ⊂ L2(�). In proving uniqueness of
the pressure component of the solution, P , a natural condition [24, 25, 39] arises,

inf
P∈W

sup
V∈V

a12(V,P)

‖P‖‖V‖ =�>0. (7)

This condition is known by many names, including the Ladyzhenskaya–Babuška–Brezzi (or LBB)
condition and the inf–sup condition.

Similar considerations apply to the discrete problem attained by restricting the functions to finite-
dimensional subspaces Uh,Vh ∈Vh and Ph,Qh ∈Wh , leading to a discrete version of the inf–sup
condition. A natural discretization, representing both Uh and Ph with bilinear basis functions, does
not satisfy the necessary inf–sup condition [40] and, hence, we are forced to consider higher-order
basis functions for Equations (3) and (4), such as the Taylor–Hood elements [24, 41] where Uh is
represented by biquadratic basis functions and Ph is represented by bilinears.

The development of efficient smoothers for the Stokes equations was originally performed in
the staggered finite-differences setting. There, the concepts of collective and distributive relaxation
were developed by Vanka [16] and Brandt and Dinar [26, 42], respectively. These smoothers were
later accompanied by quantitative analysis, based on LFA. For FE discretizations, work on efficient
smoothers for the Stokes and Navier–Stokes equations includes that by Braess and Sarazin [43],
which is based on an approximate factorization of (3) and (4), as well as that by John and others
[17, 23, 44, 45], which focuses on a variety of smoothers including those of collective (Vanka) type.

It was the FE setting especially that drove the rapid development of the algebraic multigrid
method in the nineties (of the last century), with the recognition of its impressive efficiency,
often for completely unstructured meshes. Quantitative theory for methods on these meshes is not
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available, unfortunately. To bridge the gap between the fully understood case of finite differences on
structured grids and the case of FEs on completely unstructured grids, we develop here quantitative
analysis for FE discretizations on structured quadrilateral meshes in 2D, still leading to stencil-
based discretizations.

3. ANALYSIS OF RELAXATION WITH LFA

A quantitative, predictive theoretical framework, such as LFA, allows significant algorithmic devel-
opment independent of an implementation. Here and in Section 5, we review the ideas behind
two-grid LFA; first, we focus on the analysis of the smoothing step in Fourier space. We consider
the solution of a linear system of equations, Ahuh= fh , where the subscript, h, serves to remind
us that the origins of matrix Ah are in the discretization of a PDE on a uniform quadrilateral
grid with mesh size h (or, possibly, with mesh sizes h= (hx ,hy, . . .)T that are not uniform across
dimensions).

Given an approximation, vh , to the solution of Ahuh= fh , the residual equation relates the error,
eh=uh−vh , in that approximation to the residual, rh= fh−Ahvh , as Aheh=rh . Thus, for a given
approximation, vh , we can express the true solution as uh=vh+A−1

h rh . Choosing Mh to be an
approximation to Ah that is easily inverted leads to an update iteration that can be analyzed in
terms of its error-propagation operator

eh← (I−M−1
h Ah)eh .

A complete analysis of the convergence properties of the error-propagation operator arises in
terms of its eigenvectors, {�( j)}, and eigenvalues, {� j }. Any initial error, e(0)

h , can then be expanded
into the basis given by the eigenvectors of I−M−1

h Ah , and the error after k iterations of relaxation

is given by e(k)
h =

∑
j � j�

k
j�

( j), where the coefficients, {� j }, are defined so that the expansion is

valid for the initial error, e(0)
h . The effectiveness of the relaxation on the component of the error in

the direction of a given eigenvector, �( j), is then given simply by the eigenvalue, � j . If � j is small
(e.g. |� j |�0.5), errors in the direction of �( j) are quickly attenuated by the iteration. For large � j ,
such that |� j |≈1, the errors in the direction of �( j) are slow to be reduced and, after a few steps
of the iteration, these errors will dominate the remaining difference between uh and vh .

Finding the eigenvectors and eigenvalues of I−M−1
h Ah for this analysis can be quite difficult,

depending on the matrices, Ah and Mh . For general matrices there may be little relation between
the eigenvectors and eigenvalues of Ah and those of relaxation, unless Ah and Mh are assumed to
have more structure than is typically expected, such as being circulant. Such structure is strongly
affected by boundary conditions on the PDE, while the rows of the matrix corresponding to degrees
of freedom in the interior of the PDE domain may have a natural Toeplitz or multilevel Toeplitz
structure (representing a discrete PDE on a structured grid); imposition of boundary conditions
usually results in a set of rows that have quite different values. The key idea behind LFA is to ignore
the effect of these boundary conditions, by extending the operator and relaxation stencils from the
interior of the domain to uniform infinite grids. On these grids, the discretized scalar differential
operators and the operators that define the relaxation stencils become infinite-grid (multilevel)
Toeplitz matrices, constant-stencil operators that map from one infinite sequence to another, where
these sequences represent functions discretized on the infinite grid. Any infinite-grid (multilevel)
Toeplitz matrix is diagonalized by the matrix of Fourier modes, �h , where we index the columns
of �h by a continuous index, �∈ (−�/2,3�/2]d , and the rows by their spatial location, x, and
write �h(x,�)=eı�·x/h for ı=√−1; when d=1, this change of basis is known as the discrete-time
Fourier transform [46]. In this setting, LFA has provided effective predictions on the performance
of multigrid cycles based on many common smoothers, including Gauss–Seidel [27], SOR [7],
and ILU [47].

LFA for systems of PDEs is based on a simple extension of the assumptions of LFA for scalar
PDEs. In the systems case, we assume that the matrix, Ah , is now a block matrix, where each block
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is an infinite-grid (multilevel) Toeplitz matrix. Under this assumption, each block in Ah may be
diagonalized by left and right transformations with Fourier matrices, �h , although possibly using
different nodal coordinates on the left and right for the off-diagonal blocks.

3.1. LFA for overlapping smoothers

Here, we focus on the LFA of overlapping coupled multiplicative smoothers. Overlapping
smoothers require only knowledge of the element structure, which may be easily retained on
coarse scale through element agglomeration or AMGe techniques [48–51].

We identify a collective relaxation scheme as the one that partitions the degrees of freedom of
Ah into regular subsets, Si, j , whose union provides a cover for the set of degrees of freedom. By
saying that these subsets are regular, we mean that there is a one-to-one correspondence between
the degrees of freedom in any two subsets, Si, j and Sk,l ; each subset has the same size, and the same
number of each ‘type’ of degree of freedom that comes from discretizing different unknowns of the
continuum system, in the same (relative) geometric location. The partitioning need not be disjoint;
an overlapping coupled smoother occurs when some collection of the degrees of freedom appears in
multiple subsets, typically associated with some adjacent indices. In collective relaxation, updates
are computed (sequentially or in parallel) by solving the local system (or another non-singular
auxiliary system) associated with each subset, Si, j , with the most recent residual restricted to Si, j
as a right-hand side.

If the subsets Si, j are mutually disjoint, then a collective relaxation scheme is simply a block-
wise Jacobi or Gauss–Seidel scheme and can be analyzed as such. If the blocks overlap, however,
so that certain degrees of freedom are updated multiple times over the course of a single sweep
of relaxation, classical LFA techniques fail. In a relatively unknown paper [20], Sivaloganathan
analyzed the Vanka smoother [16], a multiplicative form of overlapping collective relaxation
for the staggered finite-difference discretization of the Stokes equation; unfortunately, this paper
includes several misprints, which make the results difficult to appreciate. Independently, Molenaar
analyzed a similar collective smoother for a mixed FE discretization of Poisson’s equation [21].
Two important questions are, however, left unanswered in [20, 21]: whether the Fourier ansatz is
justified for coupled overlapping smoothers and whether these techniques can be generalized for
other PDE problems and discretizations.

LFA for non-overlapping relaxation succeeds because, in the infinite-grid (multilevel) Toeplitz
setting, the matrix, Ah , is split into two (multilevel) Toeplitz pieces, Ah=Mh−Nh , where Mh
and Nh are also both (multilevel) Toeplitz. Thus, all three matrices (and, in particular, the error-
propagation operator, M−1

h Nh) are diagonalized by a similarity transformation with the Fourier
matrix, �h (or, in the case of systems, a block-matrix consisting of disjoint Fourier matrices). It
is not apparent that the same is true for overlapping relaxations, because the error-propagation
operator is not easily written in terms of a matrix splitting.

To illustrate, we consider the (most common) case of cell-wise relaxation; for each node, (i, j),
associated with the grid-h mesh, we define a cell of size h×h adjacent to, or, including node (i, j),
and simultaneously solve for updates to all degrees of freedom that fall within or on the boundary
of this cell, see Figure 2. Relaxation is then defined in a lexicographical Gauss–Seidel manner,
sequentially solving for the unknowns associated with cell (i, j), going first across the mesh from
left to right, then up the mesh. Note that, using this definition of the collections, Si, j , each degree
of freedom located at the corner of cell (i, j) is included in four subsets, whereas those on the
edges of cell (i, j) are included in two subsets, and degrees of freedom in the interior of a cell are
included in only the subset corresponding to the cell. By a similar count, if there are k degrees
of freedom at each cell corner, lx and ly degrees of freedom along the x and y edges of a cell,
respectively, and m interior degrees of freedom, then 4k+2(lx+ly)+m degrees of freedom are
included in the subset, Si, j .

Considering the (hypothetical) elements in Figure 2, two possible definitions of the subsets, Si, j ,
are highlighted. One possibility, using the element boundaries (solid lines) to define the cells yields
subsets that overlap both at the corners of the elements and along one of the element boundaries,
while there is a unique interior node in each subset that belongs only to Si, j . Another possibility,
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Figure 2. Partitioning of degrees of freedom into overlapping subsets based on cells.

using the dual-element boundaries (marked by the dashed lines), has overlap only at the element
edges, with two interior nodes for each subset, Si, j .

In order to use the Fourier ansatz, that the error-propagation operator for coupled (overlapping)
relaxation is block-diagonalized by the Fourier matrix, �h , we need to know that this is true,
regardless of the distribution of degrees of freedom within Si, j . The following result is the key step
in proving this, showing the inductive step that if the errors before relaxation on collection Si, j
satisfy a generalized LFA ansatz, then the errors after relaxation on Si, j satisfy the same ansatz
advanced by one cell.

Theorem 1
Assume that Ah is a block-matrix with infinite-grid multilevel Toeplitz blocks, corresponding to
the discretization of a two-dimensional PDE on a regular grid with mesh size, h, and let k index
the variables within the collections, Si, j , of variables to be updated simultaneously. Let the initial
error (before the beginning of the relaxation sweep) for each unknown, U (k), be given by a single

Fourier frequency �, which is independent of k, E (k)
i, j =�(k) eı�·x(k)

i, j /h , where x(k)
i, j is the location of

the discrete node corresponding to unknown U (k) associated with relaxation subset Si, j . Let the
update for the degrees of freedom in each subset Si, j be calculated as

Unew
i, j =Uold

i, j +B−1Rold
i, j ,

where Rold
i, j is the residual at the nodes in Si, j evaluated before these unknowns are updated by the

relaxation for cell Si, j , Uold
i, j and Unew

i, j are the approximations to Ui, j before and after the relaxation
sweep, and B is some non-singular approximation of Ai, j , the diagonal block of Ah corresponding
to the subset Si, j .

Consider a partial lexicographical relaxation sweep, at the stage where the correction to cell
Si, j is to be computed. Suppose that, for all degrees of freedom, kn, located at nodes of the cells,

S�,m (so that x(kn)
�,m is the lower-left corner of the cell associated with S�,m), the once-corrected,

twice-corrected, three-times-corrected, and four-times-corrected errors satisfy

E (kn,1)
�,m = �(kn,1) eı�·x(kn)

�,m /h for m� j or m= j+1 and ��i,

E (kn,2)
�,m = �(kn,2) eı�·x(kn)

�,m /h for m� j or m= j+1 and �<i,

E (kn,3)
�,m = �(kn,3) eı�·x(kn)

�,m /h for m< j or m= j and ��i,

E (kn,4)
�,m = �(kn,4) eı�·x(kn)

�,m /h for m< j or m= j and �<i.

Further, suppose that for all degrees of freedom, kh , located on the hori zontal edges of the cells,

S�,m (so that x(kh )
�,m lies on the bottom edge of the cell associated with S�,m), the once-corrected
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and twice-corrected errors satisfy

E (kh ,1)
�,m = �(kh ,1) eı�·x(kh )

�,m /h for m� j or m= j+1 and �<i,

E (kh ,2)
�,m = �(kh ,2) eı�·x(kh )

�,m /h for m< j or m= j and �<i.

Similarly, suppose that for all degrees of freedom, kv , located on the vertical edges of the cells,

S�,m (so that x(kv)
�,m lies on the left edge of the cell associated with S�,m), the once-corrected and

twice-corrected errors satisfy

E (kv,1)
�,m = �(kv,1) eı�·x(kv )

�,m /h for m< j or m= j and ��i,

E (kv,2)
�,m = �(kv,2) eı�·x(kv )

�,m /h for m< j or m= j and �<i.

Finally, suppose that for all degrees of freedom, ki , located strictly in the interiors of the cells,
S�,m , the once-corrected errors satisfy

E (ki ,1)
�,m =�(ki ,1) eı�·x(ki )

�,m/h for m< j or m= j and �<i.

Then, after the corrections have been computed for the degrees of freedom in Si, j ,

E (kn,1)
i+1, j+1 = �(kn,1) eı�·x(kn)

i+1, j+1/h
, E (kn,2)

i, j+1=�(kn,2) eı�·x(kn)
i, j+1/h

,

E (kn,3)
i+1, j = �(kn,3) eı�·x(kn)

i+1, j /h
, E (kn,4)

i, j =�(kn,4) eı�·x(kn)
i, j /h

,

E (kh ,1)
i, j+1 = �(kh ,1) eı�·x(kh )

i, j+1/h
, E (kh ,2)

i, j =�(kh ,2) eı�·x(kh )
i, j /h

,

E (kv,1)
i+1, j = �(kv,1) eı�·x(kv )

i+1, j /h
, E (kv,2)

i, j =�(kv,2) eı�·x(kv )
i, j /h

,

E (ki ,1)
i, j = �(ki ,1) eı�·x(ki )

i, j /h
.

Proof
Consider, first, the update equation

B(Unew
i, j −Uold

i, j )=Rold
i, j . (8)

Since Enew
i, j =Ui, j−Unew

i, j and Eold
i, j =Ui, j−Uold

i, j , we can easily rewrite (8) in terms of Eold
i, j and Enew

i, j
as

B(Eold
i, j −Enew

i, j )=Rold
i, j . (9)

From the assumptions of the theorem, we know that we can express each component of Eold
i, j

in terms of appropriate Fourier coefficients. For example, for a nodal degree of freedom, kn,

E (kn,old)
i, j =E (kn,3)

i, j =�(kn,3) eı�·x(kn)
i, j /h . The values for the components of Enew

i, j are, of course, not

known a priori, but we can express them in terms of generic Fourier coefficients, �(k) eı�·x(k)
i, j /h for

component k. Thus, we can express the kth component of the update as

U (k,new)
i, j −U (k,old)

i, j =E (k,old)
i, j −E (k,new)

i, j = (�(k,old)−�(k)) eı�·x(k)
i, j /h

,

where �(k,old) is the appropriate Fourier coefficient for component k before the correction of Si, j .
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With this notation, we can restate the result to be proven as, simply, �(k)=�(k,new) for all k,
where, for each k, the value of �(k,new) is as given in the final equations of the statement of the
theorem.

Notice, however, that solution to the update equation at any other point already processed already
has this form; in particular, the solution to

B(Unew
i−1, j−Uold

i−1, j )=Rold
i−1, j

has components

U (k,new)
i−1, j −U (k,old)

i−1, j =E (k,old)
i−1, j −E (k,new)

i−1, j = (�(k,old)−�(k,new))eı�·x(k)
i−1, j /h

,

following the assumptions in the theorem. Thus, for each k, �(k)=�(k,new) if and only if

U (k,new)
i, j −U (k,old)

i, j = (�(k,old)−�(k,new))eı�·x(k)
i, j /h=eı�1 (U (k,new)

i−1, j −U (k,old)
i−1, j ).

It follows that �(k)=�(k,new) for all k if and only if

Rold
i, j = B(Unew

i, j −Uold
i, j )=eı�1 B(Unew

i−1, j−Uold
i−1, j )=eı�1Rold

i−1, j ,

since B is non-singular. Thus, to prove the theorem, we only need to demonstrate that Rold
i, j =

eı�1Rold
i−1, j .

Consider, then, a single degree of freedom, k, in Si, j . The residual, r (k)
i, j , associated with k before

relaxation on Si, j can be expressed as a function of the Fourier coefficients corresponding to the

errors at degrees of freedom connected to k, since r (k)
i, j = (AhE)(k)

i, j . Note, however, that for any k,

for any i, j , at the step before relaxation on Si, j , we can write r (k)
i, j = f (k)({�})eı�·x(k)

i, j /h , where {�}
denotes the set of all Fourier indices, as described in the statement of the theorem. In particular,
for any k, the function f (k)({�}) depends only on k and {�} and is independent of i and j , since
the states of the variables in each update set, S�,m , are always the same before relaxation treats
S�,m . This is precisely the LFA ansatz assumed in the theorem. Thus, for each k,

r (k)
i, j = f (k)({�})eı�·x(k)

i, j /h=eı�1r (k)
i−1, j ,

or Rold
i, j =eı�1Rold

i−1, j , from which the theorem follows. �

Theorem 1 states, in essence, that the set of Fourier modes of fixed frequency, �, for each
different unknown function in the PDE system, which are the eigenfunctions of any pointwise
relaxation that updates all nodes in the same pattern when applied to a scalar PDE, also form
invariant subspaces for any coupled relaxation (overlapping or not) that partitions the degrees of
freedom into self-similar collections of degrees of freedom that are treated consistently. In other
words, the error-propagation matrix for any coupled relaxation is an infinite-grid block-multilevel-
Toeplitz matrix. This, in turn, means that we can attempt to analyze these techniques using classical
multigrid smoothing and two-grid Fourier analysis tools to measure the effectiveness of the resulting
multigrid cycles. The generalization of this result to 3D is straightforward.

Analysis of the error-propagation operators in this context was done by Sivaloganathan [20]
for Vanka relaxation [16] for the standard, staggered finite-difference discretization of the Stokes
Equations in two dimensions and by Molenaar for the mixed FE discretization of Poisson’s equa-
tion using Raviart–Thomas elements [21]. This technique can be generalized to apply to any
overlapping relaxation that satisfies conditions such as those in Theorem 1: that Ah is a block-
diagonal matrix with infinite-grid multilevel Toeplitz blocks (corresponding to the discretization of
a two-dimensional PDE on a regular grid with mesh size, h), that the relaxation subsets, Si, j , are
determined also by an infinite grid with mesh size h, and that the update matrix, B, is non-singular.
Under these conditions, Equation (8) can be rewritten to give the transformation of the Fourier
coefficients through the relaxation sweep.
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Each equation in (8) can be rewritten to give an equation relating the set of updated Fourier
coefficients to the Fourier coefficients before the sweep (by moving the appropriate terms from
the residual to the left-hand side, and those from the update equations to the right). The resulting
system of equations can be written as L�new=M�old, where L is a (4k+2(lx+ly)+m)×(4k+
2(lx+ly)+m) matrix, whereas M is a (4k+2(lx+ly)+m)×(k+lx+ly+m) matrix. Computing
L−1 M gives the error-propagation operator that maps from the error before the sweep to each of
the partially updated Fourier coefficients, as well as to the fully updated coefficients, �(kn,4), �(kh ,2),
�(kv,2), and �(ki ,1). Taking the (k+lx+ly+m)×(k+lx+ly+m) submatrix that corresponds to the
rows of L−1 M associated with the fully updated Fourier coefficients gives the error-propagation
operator for relaxation as a whole. The next section gives a detailed example of this approach.

4. OVERLAPPING SCHWARZ RELAXATION FOR THE POISSON EQUATION

We explain the LFA for multiplicative smoothers in detail for Poisson’s equation with a bilinear FE
discretization, using an element-wise overlapping Schwarz relaxation. For this discrete operator,
this (somewhat involved) smoother is not really necessary, as basic pointwise relaxation is sufficient.
This smoother could, however, be useful for the Poisson operator in a discontinuous Galerkin
context. For the bilinear (Q1) discretization, a typical equation of the linear systems is

9

3
ui, j− 1

3

1∑
�=−1

1∑
�=−1

ui+�, j+�= fi, j .

By element-wise overlapping, we mean that the relaxation traverses the grid element by element,
updating the four nodes at the corners of the element at each step. Subset Si, j is taken to be
the four nodes to the North and East of (i, j) : Si, j={(i, j), (i+1, j), (i, j+1), (i+1, j+1)}. Thus,
before we relax on Si, j , the variables that appear in the equations for Si, j are in the following
states, gathered by the number of times they have been updated prior to considering Si, j :

Four times: (i−1, j−1), (i, j−1), (i+1, j−1), (i+2, j−1), (i−1, j)
Three times: (i, j)
Twice: (i+1, j), (i+2, j), (i−1, j+1)
Once: (i, j+1)
Not updated: (i+1, j+1), (i+2, j+1), (i−1, j+2), (i, j+2), (i+1, j+2), (i+2, j+2)

At this stage, we introduce the Fourier expansions for each mode, in terms of the number of
updates: ek,l=�′′′′ eı�·xk,l/h,ek,l=�′′′eı�·xk,l/h,ek,l=�

′′
eı�·xk,l/h,ek,l=�′ eı�·xk,l/h,ek,l=�eı�·xk,l/h ,

for four, three, two, one, and no updates, respectively.
We substitute these expansions into the residual equations associated with the four nodes before

the relaxation on Si, j , where rk,l and ek,l are the residual and error, respectively, in the approximation
to uk,l for each node (k, l),

ri, j = ( 8
3�′′′− 1

3 (�′′′′ e−ı(�1+�2)+�′′′′ e−ı�2+�′′′′ eı(�1−�2)+�′′′′ e−ı�1+�′′ eı�1

+�′′ eı(−�1+�2)+�′ eı�2+�eı(�1+�2)))eı�·xi, j /h

ri+1, j = ( 8
3�′′− 1

3 (�′′′′ e−ı(�1+�2)+�′′′′ e−ı�2+�′′′′eı(�1−�2)+�′′′ e−ı�1+�′′eı�1

+�′eı(−�1+�2)+�eı�2+�eı(�1+�2)))eı�·xi+1, j /h

ri, j+1 = ( 8
3�′− 1

3 (�′′′′ e−ı(�1+�2)+�′′′ e−ı�2+�′′eı(�1−�2)+�′′ e−ı�1+�eı�1

+�eı(−�1+�2)+�eı�2+�eı(�1+�2)))eı�·xi, j+1/h

ri+1, j+1 = ( 8
3�− 1

3 (�′′′ e−ı(�1+�2)+�′′ e−ı�2+�′′eı(�1−�2)+�′ e−ı�1+�eı�1

+�eı(−�1+�2)+�eı�2+�eı(�1+�2)))eı�·xi+1, j+1/h
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A weighted overlapping multiplicative Schwarz relaxation sweep can be written in terms of its
update equation, Unew

i, j =Uold
i, j +	A−1

i, j Rold
i, j , where

Ai, j= 1

3

⎡
⎢⎢⎢⎢⎣

8 −1 −1 −1

−1 8 −1 −1

−1 −1 8 −1

−1 −1 −1 8

⎤
⎥⎥⎥⎥⎦

is the piece of the system matrix connecting the unknowns in Si, j , 	 is an under-relaxation
parameter, and Uold

i, j , Unew
i, j , and Rold are, respectively, the approximations before and after relaxation,

and the residual before relaxation at the nodes in Si, j . Rewriting this as (1/	)Ai, j (Eold
i, j −Enew

i, j )=
Rnew

i, j and substituting the appropriate Fourier expansions for the errors before and after relaxation
at the nodes in Si, j gives

1

3

⎡
⎢⎢⎢⎢⎣

8 −1 −1 −1

−1 8 −1 −1

−1 −1 8 −1

−1 −1 −1 8

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

	
(�′′′−�′′′′)eı�·xi, j /h

1

	
(�′′−�′′′)eı�·xi+1, j /h

1

	
(�′−�′′)eı�·xi, j+1/h

1

	
(�−�′)eı�·xi+1, j+1/h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

ri, j

ri+1, j

ri, j+1

ri+1, j+1

⎞
⎟⎟⎟⎟⎠ . (10)

Now, this system of four equations can be rearranged into a system of equations directly for the
four updated Fourier coefficients, �′′′′, �′′′, �′′, �′. This is simply accomplished by expanding each
equation in terms of the Fourier expansions (using the expressions for ri, j , ri+1, j , ri, j+1, ri+1, j+1
derived above), then collecting terms that multiply each of the Fourier coefficients. The common
factors of 1

3 and eı�·xk,l/h can be directly canceled to simplify the calculation. For this example,
the first equation may be rewritten as(

− 8

	
+ e−ı(�1+�2)+e−ı�1+e−ı�2+eı(�1−�2)

)
�′′′′+

(
8

	
−8+ 1

	
eı�1

)
�′′′

+
((

1− 1

	

)
eı�1+ 1

	
eı�2+eı(−�1+�2)

)
�′′+

((
1− 1

	

)
eı�2+eı(�1+�2)

)
�′

=
(

1

	
−1

)
eı(�1+�2)�,

with similar expressions resulting from the other three equations. These equations may then be
solved collectively, expressing (�′′′′,�′′′,�′′,�′)T= L−1 M�, where L is a four-by-four matrix and
M is a four-by-one matrix. The first entry in (the vector) L−1 M is the amplification factor for
the complete sweep, mapping the initial error coefficient of the Fourier mode given by � into that
after a sweep of the element-wise overlapping multiplicative Schwarz relaxation.

Based on these amplification factors, we can then perform classical MG smoothing analysis, as
in [5, 6], for the overlapping smoothers. Figure 3 shows the amplification factors as a function of
the Fourier frequencies, �, for both pointwise Gauss–Seidel (left) and element-wise overlapping
multiplicative Schwarz relaxation (right). Computing the smoothing factors,


= max
�∈[−�/2,3�/2]2\[−�/2,�/2]2


(�),

where 
(�) is the amplification factor for relaxation for a given Fourier mode, �; for these two
approaches, we see that, for pointwise Gauss–Seidel, 
=0.43, whereas for the overlapping relax-
ation, 
=0.24, or that one sweep of the overlapping relaxation reduces high-frequency errors
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Figure 3. Amplification factors for pointwise Gauss–Seidel relaxation (at left) and element-wise overlapping
multiplicative Schwarz (at right) for a Q1 discretization of the Poisson equation on a mesh with h= 1

128 ,
as a function of the Fourier mode, �.

Table I. Average convergence factor over 50 iterations for multigrid
cycles based on pointwise and overlapping relaxation schemes.

Pointwise Gauss–Seidel Overlapping Schwarz

Grid V (1,1) W (1,1) V (1,1) W (1,1)

128×128 0.101 0.068 0.032 0.022
256×256 0.103 0.068 0.034 0.023
512×512 0.103 0.068 0.034 0.023

about the same amount as 1.7 sweeps of pointwise relaxation. (Note that the factor 
=0.43 for
the pointwise Gauss–Seidel iteration applied to the FE discretization considered here is different
from the often-cited factor of 0.5 for the corresponding finite-difference discretization.)

Furthermore, we can combine this smoothing analysis with the well-known LFA two-grid anal-
ysis for scalar PDEs [6, 27] of the coarse-grid correction for this system, using bilinear interpolation
and full-weighting restriction, coupled with a Galerkin coarse-grid operator. (Details of two-grid
analysis for the case of discretized systems of PDEs will be discussed shortly in Section 5.) The
largest-magnitude eigenvalue predicted by the two-grid LFA for pointwise relaxation is 0.073,
whereas it is 0.024 for the overlapping Schwarz relaxation in a (1,1)-cycle. One cycle of multi-
grid with the overlapping relaxation brings about the same total reduction in error as 1.4 cycles
using pointwise relaxation. Thus, the overlapping relaxation yields a better solver, but the extra
cost of the overlapping relaxation likely does not pay off (unless it can be implemented very
efficiently). As a comparison, we consider the true performance of multigrid V (1,1) and W (1,1)
cycles using both pointwise Gauss–Seidel and element-wise overlapping multiplicative Schwarz
smoothers, shown in Table I. Here, we see that the two-grid LFA accurately predicts the W -cycle
multigrid convergence rates for both smoothers, but is a noticeable underestimate for the V -cycle
convergence rates. This is typical of LFA, because the two-grid analysis is based on exact solution
of the first coarse-grid problem; a multigrid W -cycle, where this level is visited twice per iteration,
is a much better approximation of this than a V -cycle, which uses much less relaxation.

5. TWO-GRID LFA

We discuss here the basics of two-grid LFA in order to deal with systems of PDEs on staggered
FE grids. We focus on two-grid analysis, but multilevel analysis is also possible using inductive
arguments.
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In general, two-grid methods can be represented by error-propagation operators with form

E (TG)
h = (I−M−1

h Ah)�2 (I−P H
h B−1

H Rh
H Ah)(I−M−1

h Ah)�1, (11)

where H denotes the mesh size of the coarse scale, Rh
H is the restriction operator from grid h

to grid H , P H
h is the interpolation operator from grid H to grid h, and BH represents some

discretization on the coarse scale.
Writing the eigenvector matrix for the error-propagation operator associated with relaxation as

�h= [�(1),�(2), . . . ,�(N )], we know that I−M−1
h Ah is diagonalized by a similarity transformation

with �h ,

(�h)−1(I−M−1
h Ah)�h=�,

where � is the diagonal matrix of eigenvalues of relaxation, �i i=�i . We can block-diagonalize
E (TG)

h , also using �h in a similarity transformation. Taking �H to be the matrix of eigenvectors
of BH , we can then write

�−1
h E (TG)

h �h=��2 (I−(�−1
h P H

h �H )�−1(�−1
H Rh

H �h)(�−1
h Ah�h))��1, (12)

where �=�−1
H BH �H is also a diagonal operator.

Under the LFA assumptions for smoothing that Ah and Mh are infinite-grid (multilevel) Toeplitz
matrices, �−1

h Ah�h is also a diagonal matrix. If we additionally take BH to correspond to the
discretization of a PDE on an infinite grid with fixed mesh size, H , with a stencil that does
not vary with position, then the difficulty in analyzing (12) comes from the intergrid-transfer
operators, �−1

H Rh
H �h and �−1

h P H
h �H . The transformation of Rh

H and P H
h in terms of the coarse-

grid and fine-grid Fourier matrices, �H and �h , depends on the relationship between the two
mesh sizes, H and h. Taking H=2h, as is commonly the case in geometric multigrid, then a
constant-stencil restriction operator, Rh

H , for a two-dimensional mesh maps four fine-grid frequen-
cies into one coarse-grid function. These four functions, known as the Fourier harmonics, are
associated with some base index, �0,0∈ (−�

2 , �
2 ]2, and three more-oscillatory modes, associated with

frequencies

�1,0=�0,0+
(

�

0

)
, �0,1=�0,0+

(
0

�

)
and �1,1=�0,0+

(
�

�

)
.

The action of a constant-coefficient restriction operator, Rh
2h , on a fine-grid residual, rh , can be

written in terms of a set of restriction weights, {wk,l}, as

(Rh
2hrh)I,J =

∑
k,l

wk,lri+k, j+l , (13)

where (i, j) is the fine-grid index corresponding to coarse-grid index (I, J ), hence (i, j)= (2I,2J ).
Note that the weights, wk,l for restriction are independent of the coarse-grid degree of freedom,
(I, J ), being considered. This means that the rows of Rh

2h all take the same form, with only a
simple shift in location of the non-zero entries, depending on (I, J ).

Similarly, we can write the action of a constant-coefficient interpolation operator, P2h
h , on a

coarse-grid correction, e2h , in terms of several sets of interpolation weights, {w(m)
K ,L},

(P2h
h e2h)i, j=

∑
K ,L

w
(m)
K ,LeI+K ,J+L , (14)

where the additional superscript, m, is used to denote the position of node (i, j) relative to the
coarse node, (I, J ), see Figure 4. Notice that these weights are independent of the absolute location
of the underlying nodes, but do depend on the staggering of the nodes relative to the coarse grid,
(i−2I, j−2J ). In other words, while the columns of P2h

h take the same form, up to shifts, there
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Figure 4. Nesting of fine-grid nodes relative to the coarse grid for nested (collocated) grids.

are m distinct forms for the rows of P2h
h . In Figure 4, there are four distinct cases: a fine-grid

node (i1, j1) that is co-located with the coarse-grid nodes, a fine-grid node (i2, j2) that lies on an
x-axis-oriented line between two coarse-grid nodes, a fine-grid node (i3, j3) that lies on a y-axis-
oriented line between two coarse-grid nodes, and a fine-grid node (i4, j4) that lies at the center of
a coarse-grid cell. The weights for interpolation to each of these types of points will be different,
hence the notation w

(m)
K ,L .

The set of modes, �2h(x,2�0,0) for �0,0∈ (−�/2,�/2]2, is a complete set of Fourier modes
on the coarse grid and thus, by assumption, diagonalize the multilevel Toeplitz operator, B2h .
As such, the spaces of harmonic frequencies become invariant subspaces for the coarse-grid
correction process and for the two-grid cycle as a whole. From the similarity transformation
representation given in Equation (12), we can then compute the eigenvalues of the two-grid error-
propagation operator by computing the eigenvalues of �−1

h E (TG)
h �h . This matrix is easily permuted

into block-diagonal form with, at most, 4×4 blocks corresponding to the spaces of harmonic
modes. Therefore, to compute the LFA eigenvalues, we only need to compute the spectra of 4×4
matrices.

5.1. LFA for systems

For systems of PDEs, the LFA analysis does not diagonalize Ah through the Fourier-mode simi-
larity transformation but, rather, transforms the N×N block-matrix, Ah , corresponding to the
discretization of a system of N PDEs with N unknown functions, into a matrix that can be
permuted into a block-diagonal form with dense N×N blocks, by diagonalizing each block within
Ah . The block coupling of the operator resulting from the full similarity transformation will have
larger dense blocks than 4×4, as we must also account for the N×N coupling within Ah (and
relaxation) that arises because of the systems form of Ah . Thus, LFA for systems in 2D results in
coupled 4N×4N blocks of harmonics (with four harmonics for each of the N scalar unknowns
of the PDE) for each base frequency, �0,0∈ (−�/2,�/2]2. Aside from this difference, the analysis
below proceeds in the same manner as in the scalar case.

5.2. Grid transfers for staggered systems

An added challenge in the multigrid treatment of a system of PDEs is that each different variable
type may be staggered in its own way.

If the different variable types do not interact in interpolation and restriction (so that each variable
type only restricts to and interpolates from a coarse-grid variable with the same staggering pattern),
then the LFA for interpolation for the whole system can be done treating each variable type, in
turn, as a scalar problem. If, on the other hand, there is a need for inter-variable interpolation
or restriction in the treatment of the system, we must modify the method for the scalar case to
account for the different staggering on the two grid levels. As in Figure 5, we now take (�1,�2) to
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Figure 5. Nesting of fine-grid nodes relative to the coarse grid for non-nested grids, with
(�1,�2)= (0, 1

2 ) and (
1,
2)= ( 1
3 , 2

3 ).

describe the staggering of a fine-level variable, rh (either to be restricted from or interpolated to),
and (
1,
2) to describe the staggering of a coarse-level variable, e2h .

Lemma 1
Let �0,0∈ (−�/2,�/2]2, and let (I, J ) be a coarse-grid node index, identified with fine-grid node
index (i, j)= (2I,2J ). Then, any constant-coefficient restriction operator, as defined by Equation
(13), maps the four Fourier harmonic modes, �h(x,�0,0), �h(x,�1,0), �h(x,�0,1), and �h(x,�1,1),
on the grid with shift (�1,�2) into the single coarse-grid mode, �2h(x,2�0,0), on the grid with shift
(
1,
2).

Proof
Considering a fine-grid residual, rh , that is a linear combination of the four harmonic frequencies,

ri, j = c0,0�h(((i+�1)h, ( j+�2)h),�0,0)+c1,0�h(((i+�1)h, ( j+�2)h),�1,0)

+c0,1�h(((i+�1)h, ( j+�2)h),�0,1)+c1,1�h(((i+�1)h, ( j+�2)h),�1,1)

= c0,0 eı�0,0·(i+�1, j+�2)+c1,0 eı�1,0·(i+�1, j+�2)+c0,1 eı�0,1·(i+�1, j+�2)+c1,1 eı�1,1·(i+�1, j+�2)

= (c0,0+c1,0 eı�i eı��1+c0,1 eı� j eı��2+c1,1 eı�(i+ j) eı�(�1+�2))eı�0,0·(�1,�2) eı�0,0·(i, j).

As the nodes are numbered based on their cell, node (I, J ) on grid 2h can be identified with node
(i, j) on grid h for i=2I and j=2J . We seek to represent the restricted residual on the coarse grid,
Rh

2hrh , as a multiple of the coarse-grid harmonic function, �2h((I+
1)(2h), (J+
2)(2h),2�0,0)=
eı2�0,0·(I+
1,J+
2). Thus, we can write the restriction of rh to a differently staggered coarse-grid
variable in cell (I, J ), where (i, j)= (2I,2J ), as

(Rh
2hrh)I,J =

∑
k,l

wk,lri+k, j+l

= eı2�0,0·(I+
1,J+
2)

[∑
k,l

wk,l eı�0,0·(k,l) eı�0,0·(�1−2
1,�2−2
2)(c0,0+c1,0 eı�k eı��1

+c0,1 eı�l eı��2+c1,1 eı�(k+l) eı�(�1+�2))

]

�

Lemma 2
Let �0,0∈ (−�/2,�/2]2 and (I, J ) be a coarse-grid node index. Let (i1, j1), (i2, j2), (i3, j3), and
(i4, j4) be four fine-grid node indices, as identified in Figure 5. Then, any constant-coefficient
interpolation operator on the shifted grid maps coarse-grid mode �2h(x,2�0,0) into the four fine-grid
harmonics, �h(x,�0,0), �h(x,�1,0), �h(x,�0,1), and �h(x,�1,1).
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Proof
The Fourier analysis for interpolation can be derived by similarly accounting for the different
staggering of a coarse-grid variable, e2h , staggered on grid 2h with (
1,
2), and its fine-grid inter-
polant, staggered on grid h with (�1,�2). Choosing eI,J =�2h(((I+
1)(2h), (J+
2)(2h)),2�0,0),
we get (taking (i1, j1)= (2I,2J ))

(P2h
h e2h)i1, j1=

(∑
K ,L

w
(1)
K ,L eı2�0,0·(K ,L) eı�0,0·(2
1−�1,2
2−�2)

)
eı�0,0·(i1+�1, j1+�2). (15)

Similarly, we can derive the staggered interpolation relations for the other three node points in
coarse-grid cell (I, J ) as

(P2h
h e2h)i2, j2 =

(∑
K ,L

w
(2)
K ,L eı�0,0·(2K−1,2L) eı�0,0·(2
1−�1,2
2−�2)

)
eı�0,0·(i2+�1, j2+�2),

(P2h
h e2h)i3, j3 =

(∑
K ,L

w
(3)
K ,L eı�0,0·(2K ,2L−1) eı�0,0·(2
1−�1,2
2−�2)

)
eı�0,0·(i3+�1, j3+�2),

(P2h
h e2h)i4, j4 =

(∑
K ,L

w
(4)
K ,L eı�0,0·(2K−1,2L−1) eı�0,0·(2
1−�1,2
2−�2)

)
eı�0,0·(i4+�1, j4+�2).

Making the ansatz that P2h
h e2h can be written as a linear combination of the four Fourier

harmonics, now on the shifted grid, we have

(P2h
h e2h)i, j = c0,0 eı�0,0·(i+�1, j+�2)+c1,0 eı�1,0·(i+�1, j+�2)

+c0,1 eı�0,1·(i+�1, j+�2)+c1,1 eı�1,1·(i+�1, j+�2)

= (c0,0+c1,0 eı�(i+�1)+c0,1 eı�( j+�2)+c1,1 eı�(i+ j+�1+�2))eı�0,0·(i+�1, j+�2).

Equating terms for (i1, j1)= (2I,2J ) gives

c0,0+c1,0 eı��1+c0,1 eı��2+c1,1 eı�(�1+�2)=c1(�0,0),

for c1(�0,0) given by the expression in Equation (15). With similar equations for the other inter-
polation nodes, we have

⎡
⎢⎢⎢⎣

c0,0

c1,0 eı��1

c0,1 eı��2

c1,1 eı�(�1+�2)

⎤
⎥⎥⎥⎦= ε̂

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
K ,L

w
(1)
K ,L eı2�0,0·(K ,L)

∑
K ,L

w
(2)
K ,L eı�0,0·(2K−1,2L)

∑
K ,L

w
(3)
K ,L eı�0,0·(2K ,2L−1)

∑
K ,L

w
(4)
K ,L eı�0,0·(2K−1,2L−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with ε̂=eı�0,0·(2
1−�1,2
2−�2)/4. �

6. NUMERICAL EXAMPLES

In this section, we give several smoothing and two-grid LFA estimates for systems of PDEs
within the framework of multiplicative collective smoothers of Vanka-type. These smoothers, which
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explicitly deal with the large nullspaces that appear, are the only collective smoothers that give
satisfactory performance for the operators of interest. We do not investigate the impact of the
ordering of the cells in the present paper and stay with a lexicographical ordering of the relaxation
subsets.

To take LFA from its infinite-grid setting and get a predictive analysis tool, we need to introduce
a second discretization into the analysis, going from a continuous parameter, �0,0, to a discrete
mesh in �0,0, upon which a convergence prediction can be made. Thus, the results presented here
have two step-size parameters: h, the spatial grid size, which is directly reflected in the coefficients
of the discrete operators to which we apply LFA, and h�, the mesh size for the discrete lattice of
� used to make a quantitative prediction based on LFA.

A discrete set of the 4×4 Fourier blocks is then analyzed, corresponding to a discrete choice
of frequencies, �0,0∈ (−�/2,�/2]2, given by a tensor product of an equally spaced mesh over
the interval of length � with itself, with mesh-spacing h�. Because the infinite-grid fine-grid and
coarse-grid operators, Ah and B2h , are often singular, with the constant functions, �h(x, (0,0))
and �2h(x, (0,0)), in their nullspaces, we choose the mesh in �0,0 so that �0,0= (0,0) does not
appear. A prediction of the performance of the multigrid algorithm is made by measuring the
largest eigenvalue of the transformed operators over this discrete space. All of the numbers quoted
here result from this process, for h= 1

64 and h�=�/32. The impact of finer meshes in either space
or Fourier frequency was negligible in the examples considered here.

6.1. The grad–div and the curl–curl operators

We first consider the discretization of the grad–div and the curl–curl equations, (1) and (2),
respectively. As the stencils, multigrid methods, and smoothers, as well as their LFA performance
estimates are very similar for the two equations, we discuss them in one section.

For the grad–div equation (1), we use first-order Raviart–Thomas (face) elements for the vector
field U= (u,v)T, as already discussed in Section 2.2. The discrete degrees of freedom for this
discretization are the values of u at the midpoints of mesh edges that are parallel to the y-axis,
and the values of v at the midpoint of mesh edges that are parallel to the x-axis. The resulting
stencil, for u, reads ⎡

⎢⎣
1 −1

−1 2 −1

−1 1

⎤
⎥⎦

h

,

where the one-dimensional part of the stencil, [−1 2 −1], gives the u–u connection, and the
remaining terms give the u–v connection. The contribution of the mass matrix is then added to this
stencil, taking the form of a one-dimensional stencil, [h2/6 2h2/3 h2/6], connecting u degrees
of freedom to u degrees of freedom; thus, the central stencil element for the discretization of
−∇(a∇ ·U)+U (with constant-coefficient a) is 2a+2h2/3. The resulting, rotated, stencil for the
v components is similar.

As mentioned earlier, we choose the Nédélec edge elements [35] to discretize the weak curl–curl
operator in (2), for unknown U= (u,v)T. The resulting stencil for the u-component is⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−1

−1 1

2

1 −1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

h

,

while, for v, we find an identical, but rotated, stencil. It is clear that the resulting stencils for the
grad–div and curl–curl operators are identical, but rotated. Hence, we focus on the discussion of
the smoother for grad–div, as the one for curl–curl is similar and produces identical LFA results.
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The overlapping smoother, in particular for the grad–div operator, was proposed in [15, 37],
where the degrees of freedom along the faces (edges) adjacent to a node were chosen to be relaxed
simultaneously, see Figure 1. We refer to this as a node-wise smoothing procedure.

Thus, we take the collection, Si, j , of degrees of freedom to be relaxed simultaneously to be
Si, j={ui, j−1/2,ui, j+1/2,vi−1/2, j ,vi+1/2, j }, and introduce intermediate variables for the Fourier
expansions of the errors in u and v at each stage in the smoothing process, as in Section 3: before
relaxation, �u ei�·x/h, �v ei�·x/h; after the first correction, �′u ei�·x/h, �′v ei�·x/h; and after the second
correction, �′′u ei�·x/h, �′′v ei�·x/h. We can then write the update equations in terms of the Fourier coef-
ficients: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2h2

3
+2a 0 a −a

0
2h2

3
+2a −a a

a −a
2h2

3
+2a 0

−a a 0
2h2

3
+2a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ui, j+ 1
2

�ui, j− 1
2

�vi+ 1
2 , j

�vi− 1
2 , j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ru
i, j+ 1

2

ru
i, j− 1

2

rv

i+ 1
2 , j

rv

i− 1
2 , j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and convert this system into a system for �′′u , �′′v , �′u , �′v in terms of �u and �v , as explained for
Equation (10).

In the numerical LFA smoothing and two-grid experiments here, we vary the transfer operators
in the algorithms. We consider the usual six-point restriction operator, based on the fine-grid resid-
uals at the six nearest fine-grid locations of the corresponding unknown. This operator is dictated
by the staggered arrangement of the unknowns. For the prolongation operators, we compare the
transpose of the six-point restriction, i.e. the six-point interpolation, with a twelve-point inter-
polation and a two-point interpolation. We denote these transfer operators by 6r , 6p, 12p and
2p, respectively. See [52] or [27, Section 8.7.1] for details on these transfer operators. In the
experiments, we fix the smoother to be the lexicographical AFW smoother; the corresponding
smoothing factor, based on one smoothing iteration, is 
=0.44. Further, the Galerkin coarse-grid
operator is chosen. Table II presents the corresponding two-grid LFA results. Results here are
shown for the grad–div (and curl–curl) parameter a=106. However, for values of a ranging from
106 to O(1), we find identical LFA results; that is, no sensitivity to the value of the param-
eter a is observed. The results in Table II do demonstrate a sensitivity to the choice of transfer
operators.

The algorithm with the commonly chosen six-point transfer operators, however, shows an excel-
lent two-grid factor for these problems. Very similar results are obtained with finite-difference
multigrid experiments for the grad–div operator in [29]. These results can be labeled as text-
book multigrid efficiency, and an increasing number of smoothing steps further decreases the
two-grid factors. In contrast, LFA smoothing analysis, as well as actual numerical multigrid
experiments, indicate that an element-wise multiplicative smoothing method, updating unknowns

Table II. Two-grid LFA factors for different sets of
transfer operators. Grad–div and curl–curl results with a

multiplicative AFW smoother.

Restriction Prolongation �2g , (1,1)-cycle

6r 6p 0.134
6r 12p 0.134
6r 2p 0.53
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Table III. Two-grid LFA convergence factors, �2g , and smoothing
factors, 
, for the full Vanka smoother for the Q2−Q1 discretiza-

tion of Stokes with pressure-wise relaxation groups.

Velocity under-relaxation Full under-relaxation

	 �2g 
 �2g 


1.0 0.77 0.76 0.77 0.76
0.9 0.67 0.74 0.58 0.67
0.8 0.58 0.71 0.43 0.61
0.7 0.48 0.68 0.37 0.60
0.6 0.38 0.65 0.45 0.67
0.5 0.36 0.60 0.54 0.74

In the left two columns, under-relaxation is used only on the velocity
variables, whereas it is used on all variables (with the same under-
relaxation parameter) in the right two columns.

around the element center simultaneously, does not provide any smoothing for this type of
problem.

6.2. Stokes equations

For the Taylor–Hood (Q2−Q1) elements on quadrilateral grids, there are many possible collec-
tions of unknowns that can be used to define the relaxation subsets, Si, j . Vanka’s original choice
for the staggered finite-difference discretization of the Stokes equations [16] can be viewed
both as being an element-wise choice, as each relaxation subset consists of the four velocity
unknowns and single pressure unknown on each grid cell, and also as being a pressure-wise
choice, as these relaxation subsets also correspond to the complete set of velocities that appear
in the divergence equation at a given pressure node plus that pressure node itself. For this
FE discretization, however, the element-wise and pressure-wise relaxation subsets are distinct.
Further choices are also possible, such as the larger collections analyzed in [22]. As first noted
(without explanation) in [17], difficulties arise in using element-wise smoothing for the Taylor-
Hood discretization. LFA confirms this, with substantial under-relaxation necessary to achieve a
smoothing factor that is less than one. For this reason, we focus here on the pressure-wise smoothing
algorithm.

Table III displays both two-grid LFA convergence factors, �2g , and LFA smoothing factors,

, for the full Vanka smoother using pressure-wise relaxation. Two types of under-relaxation
are considered: under-relaxation on only the velocities (as first suggested by Vanka [16]) and
full under-relaxation, where the corrections to velocities and pressure are weighted equally. Both
types of under-relaxation are shown to yield significant improvement in both the smoothing and
two-grid convergence factors. Figures 6 and 7 depict the amplification factors for relaxation
as a function of the Fourier mode and the spectrum of the two-grid operator (sampled on a
64×64 mesh in the Fourier domain [−�/2,3�/2]2) for no under-relaxation (in Figure 6), and
under-relaxation in velocity only with a factor of 	=0.5 (in Figure 7). Note that in the under-
relaxed case, the amplification factor near (�,�) is greater than 0.5; however, in this case, the
reduction of error in the Fourier modes with frequencies near (�,�) by two steps of relaxation
is in balance with the reduction in the smooth modes by the coarse-grid correction process,
leading to a much more efficient cycle than is achieved with no weighting of the relaxation
process.

Because of the expense of inverting the full velocity submatrix associated with the relaxation
subsets, a cheaper alternative to the full Vanka smoother using only the diagonal of this matrix is
often considered [17, 23]. Table IV gives two-grid LFA convergence factors, �2g , and smoothing
factors, 
, for this variant, known as the diagonal Vanka smoother. Here, we see that without
under-relaxation, the smoother is mildly divergent; however, under-relaxation quickly resolves
this and leads to a smoother that is not only much less expensive than, but also less effective
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Figure 6. At left, the amplification factor for the full pressure-wise Vanka smoother with no under-relaxation
for the Q2−Q1 discretization of the Stokes equations on a mesh with h= 1

64 , as a function of the
Fourier mode, �. At right, the spectrum of the two-grid error-propagation operator using this smoother

with biquadratic interpolation for the velocities and bilinear interpolation for the pressure.

Figure 7. At left, the amplification factor for the full pressure-wise Vanka smoother with
under-relaxation with parameter 	=0.5 used for the velocities only with the Q2−Q1
discretization of the Stokes equations on a mesh with h= 1

64 , as a function of the Fourier
mode, �. At right, the spectrum of the two-grid error-propagation operator using this smoother

with biquadratic interpolation for the velocities and bilinear interpolation for pressure.

than the full Vanka smoother. The amplification factor for this smoother and the spectrum of
the two-grid iteration matrix using under-relaxation on all variables with parameter 	=0.8 are
shown in Figure 8.

If we ignore the inf–sup condition (7) when discretizing Equations (5) and (6), one appealing
discretization would be to represent the velocities by bilinear basis functions and pressure as a
piece-wise constant function on each element. While it is well known that such an approach (without
the addition of a stabilization term) sacrifices significant accuracy in the resulting solution [40, 53],
it is equally important to note the difficulty in designing an efficient solver for this discretization.
Figure 9 shows the amplification factor for element-wise Vanka smoothing for this discretization
(which is, in this case, the same as the pressure-wise smoother) at left, and the spectrum of the two-
grid error-propagation operator for a (1,1)-cycle at right. Adding under-relaxation to the velocities
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Table IV. Two-grid LFA convergence factors, �2g , and smoothing
factors, 
, for the diagonal Vanka smoother for the Q2−Q1
discretization of Stokes with pressure-wise relaxation groups.

Velocity under-relaxation Full under-relaxation

	 �2g 
 �2g 


1.0 1.41 1.22 1.41 1.22
0.9 1.10 1.08 0.71 0.89
0.8 0.83 0.95 0.52 0.75
0.7 0.59 0.84 0.56 0.70
0.6 0.56 0.77 0.61 0.74
0.5 0.61 0.78 0.64 0.78

In the left two columns, under-relaxation is used only on the velocity
variables, whereas it is used on all variables (with the same under-
relaxation parameter) in the right two columns.

Figure 8. At left, the amplification factor for the diagonal pressure-wise Vanka smoother with
under-relaxation on all variables with parameter 	=0.8 for the Q2−Q1 discretization of
the Stokes equations on a mesh with h= 1

64 , as a function of the Fourier mode, �. At right,
the spectrum of the two-grid error-propagation operator using this smoother with biquadratic

interpolation for the velocities and bilinear interpolation for pressure.

has little effect on these results, with an LFA smoothing factor of 0.995 for 	=0.6, 0.7, 0.8, 0.9,
and 1.0. Of particular interest is the large amplification factor associated with the Fourier mode at
(�,�), which is also the same mode that leads to the instability in the discretization.

7. CONCLUSION

In this paper, we present a theoretical analysis on the validity of LFA for multigrid methods in
which staggered grid transfers and multiplicative overlapping smoothers are included. The LFA
for these smoothers had been performed before in two specific instances, but fundamental insight
into the validity of the exponential Fourier functions as eigenfunctions of these smoothers has
not been found in the literature. We focus on systems of PDEs discretized by state-of-the-art
FEs: the grad–div equation with Raviart–Thomas elements, the curl–curl equation with Nédélec
edge elements, and the Stokes equation with Taylor–Hood elements. We show that the analysis
for overlapping smoothers, as developed for fluid mechanics problems, can easily be applied to
the model equations in electromagnetics. The corresponding multiplicative smoothers give rise to
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Figure 9. At left, the amplification factor for the element-wise (overlapping) Vanka smoother for the
Q1−P0 discretization of the Stokes equations on a mesh with h= 1

64 , as a function of the Fourier mode,
�. At right, the spectrum of the two-grid error-propagation operator using this smoother with bilinear

interpolation for the velocities and piece-wise constant interpolation for pressure.

solvers with textbook multigrid efficiency. In this way, we extend the LFA and related software to
arbitrary FE discretizations.

ACKNOWLEDGEMENTS

This research was supported by the European Community’s Sixth Framework Programme, through a Marie
Curie International Incoming Fellowship, MIF1-CT-2006-021927. The work of S. P. M. was partially
supported by the National Science Foundation, under grant DMS-0811022.

REFERENCES

1. Bramble JH, Pasciak JE, Wang J, Xu J. Convergence estimates for multigrid algorithms without regularity
assumptions. Mathematics of Computation 1991; 57:23–45.

2. Hackbusch W. Convergence of multi-grid iterations applied to difference equations. Mathematics of Computation
1980; 34:425–440.

3. McCormick SF. An algebraic interpretation of multigrid methods. SIAM Journal on Numerical Analysis 1982;
19:548–560.

4. Falgout RD, Vassilevski PS, Zikatanov LT. On two-grid convergence estimates. Numerical Linear Algebra with
Applications 2005; 12:471–494. Also available as LLNL Technical Report UCRL-JC-150807.

5. Brandt A. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation 1977; 31:
333–390.

6. Stüben K, Trottenberg U. Multigrid methods: fundamental algorithms, model problem analysis and applications.
In Multigrid Methods, Hackbusch W, Trottenberg U (eds). Lecture Notes in Mathematics, vol. 960. Springer:
Berlin, 1982; 1–176.

7. Yavneh I. On red–black SOR smoothing in multigrid. SIAM Journal on Scientific Computing 1996; 17(1):180–192.
8. Wienands R, Joppich W. Practical Fourier analysis for multigrid methods. Numerical Insights, vol. 4. Chapman

& Hall/CRC: Boca Raton, FL, 2005. With 1 CD-ROM (Windows and UNIX).
9. bin Zubair H, Oosterlee C, Wienands R. Multigrid for high-dimensional elliptic partial differential equations on

non-equidistant grids. SIAM Journal on Scientific Computing 2007; 29(4):1613–1636.
10. Wienands R, Oosterlee CW, Washio T. Fourier analysis of GMRES(m) preconditioned by multigrid. SIAM Journal

on Scientific Computing 2000; 22(2):582–603.
11. Gaspar F, Gracia J, Lisbona F. Fourier analysis for multigrid methods on triangular grids. SIAM Journal on

Scientific Computing 2009; 31(3):2081–2102.
12. Zhou G, Fulton SR. Fourier analysis of multigrid methods on hexagonal grids. SIAM Journal on Scientific

Computing 2009; 31(2):1518–1538.
13. Borzì A. High-order discretization and multigrid solution of elliptic nonlinear constrained optimal control problems.

Journal of Computational and Applied Mathematics 2007; 200(1):67–85.

Copyright � 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:751–774
DOI: 10.1002/nla



LFA FOR SYSTEMS OF PDES 773

14. Hemker PW, Hoffmann W, van Raalte MH. Fourier two-level analysis for discontinuous Galerkin discretization
with linear elements. Numerical Linear Algebra with Applications 2004; 11(5–6):473–491.

15. Arnold D, Falk R, Winther R. Multigrid in H (div) and H (curl). Numerische Mathematik 2000; 85(2):197–217.
16. Vanka SP. Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. Journal of

Computational Physics 1986; 65:138–158.
17. John V, Matthies G. Higher-order finite element discretizations in a benchmark problem for incompressible flows.

International Journal for Numerical Methods in Fluids 2001; 37(8):885–903.
18. Boonen T, van Lent J, Vandewalle S. Local Fourier analysis of multigrid for the curl–curl equation. SIAM Journal

on Scientific Computing 2008; 30(4):1730–1755.
19. Schöberl J, Zulehner W. On Schwarz-type smoothers for saddle point problems. Numerische Mathematik 2003;

95(2):377–399.
20. Sivaloganathan S. The use of local mode analysis in the design and comparison of multigrid methods. Computer

Physics Communications 1991; 65:246–252.
21. Molenaar J. A two-grid analysis of the combination of mixed finite elements and Vanka-type relaxation. In

Multigrid Methods III, Hackbusch W, Trottenberg U (eds). International Series of Numerical Mathematics, vol.
98. Birkhäuser: Basel, 1991; 313–324.

22. Manservisi S. Numerical analysis of Vanka-type solvers for steady Stokes and Navier–Stokes flows. SIAM Journal
on Numerical Analysis 2006; 44(5):2025–2056.

23. Larin M, Reusken A. A comparative study of efficient iterative solvers for generalized Stokes equations. Numerical
Linear Algebra with Applications 2008; 15(1):13–34.

24. Braess D. Finite Elements (2nd edn). Cambridge University Press: Cambridge, 2001.
25. Brenner S, Scott L. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics,

vol. 15. Springer: New York, 1994.
26. Brandt A. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. GMD–Studien, Nr. 85.

Gesellschaft für Mathematik und Datenverarbeitung: St. Augustin, 1984.
27. Trottenberg U, Oosterlee CW, Schüller A. Multigrid. Academic Press: London, 2001.
28. Hiptmair R. Multigrid method for H (div) in three dimensions. Electronic Transactions on Numerical Analysis

1997; 6:133–152.
29. Gaspar FJ, Gracia JL, Lisbona FJ, Oosterlee CW. Distributive smoothers in multigrid for problems with dominating

grad–div operators. Numerical Linear Algebra with Applications 2008; 15(8):661–683.
30. Bochev PB, Garasi CJ, Hu JJ, Robinson AC, Tuminaro RS. An improved algebraic multigrid method for solving

Maxwell’s equations. SIAM Journal on Scientific Computing 2003; 25(2):623–642.
31. Hu J, Tuminaro R, Bochev P, Garasi C, Robinson A. Toward an h-independent algebraic multigrid method for

Maxwell’s equations. SIAM Journal on Scientific Computing 2006; 27(5):1669–1688.
32. Reitzinger S, Schöberl J. An algebraic multigrid method for finite element discretizations with edge elements.

Numerical Linear Algebra with Applications 2002; 9(3):223–238.
33. Hiptmair R. Multigrid method for Maxwell’s equations. SIAM Journal on Numerical Analysis 1999; 36(1):

204–225.
34. Raviart PA, Thomas JM. A mixed finite element method for 2nd order elliptic problems. Mathematical Aspects of

Finite Element Methods. Lecture Notes in Mathematics, vol. 606. Springer: Berlin, 1977; 292–315. Proceedings
of the Conference on Consiglio Nazionale delle Ricerche (C.N.R.), Rome, 1975.

35. Nédélec JC. Mixed finite elements in R3. Numerische Mathematik 1980; 35(3):315–341.
36. Vassilevski PS, Wang JP. Multilevel iterative methods for mixed finite element discretizations of elliptic problems.

Numerische Mathematik 1992; 63(4):503–520.
37. Arnold D, Falk R, Winther R. Preconditioning in H (div) and applications. Mathematics of Computation 1997;

66(219):957–984.
38. Hiptmair R, Hoppe RHW. Multilevel methods for mixed finite elements in three dimensions. Numerische

Mathematik 1999; 82(2):253–279.
39. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics,

vol. 15. Springer: New York, 1991.
40. Fortin M. Old and new finite elements for incompressible flows. International Journal for Numerical Methods

in Fluids 1981; 1(4):347–364.
41. Girault V, Raviart PA. Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in

Mathematics, vol. 749. Springer: Berlin, 1979.
42. Brandt A, Dinar N. Multigrid solutions to elliptic flow problems. In Numerical Methods for Partial Differential

Equations, Parter S (ed.). Academic Press: New York, 1979; 53–147.
43. Braess D, Sarazin R. An efficient smoother for the Stokes problem. Applied Numerical Mathematics 1997;

23:3–20.
44. John V, Tobiska L. Numerical performance of smoothers in coupled multigrid methods for the parallel solution

of the incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids 2000;
33(4):453–473.

45. Wobker H, Turek S. Numerical studies of Vanka-type smoothers in computational solid mechanics. Advances in
Applied Mathematics and Mechanics 2009; 1:29–55.

46. Oppenheim A, Schafer R. Discrete-time Signal Processing. Prentice-Hall Signal Processing Series. Prentice-Hall:
Upper Saddle River, NJ, 1999.

Copyright � 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:751–774
DOI: 10.1002/nla



774 S. P. MACLACHLAN AND C. W. OOSTERLEE

47. Wittum G. On the robustness of ILU-smoothing. SIAM Journal on Scientific Computing 1989; 10:699–717.
48. Brezina M, Cleary A, Falgout R, Henson V, Jones J, Manteuffel T, McCormick S, Ruge J. Algebraic multigrid

based on element interpolation (AMGe). SIAM Journal on Scientific Computing 2000; 22:1570–1592.
49. Vassilevski P. Sparse matrix element topology with application to AMG(e) and preconditioning. Numerical Linear

Algebra with Applications 2002; 9(6–7):429–444. Preconditioned robust iterative solution methods, PRISM ’01,
Nijmegen.

50. Chartier T, Falgout R, Henson V, Jones J, Manteuffel T, McCormick S, Ruge J, Vassilevski P. Spectral
element agglomerate AMGe. Domain Decomposition Methods in Science and Engineering XVI. Lecture Notes
in Computational Science and Engineering, vol. 55. Springer: Berlin, 2007; 513–521.

51. Kolev TV, Vassilevski PS. AMG by element agglomeration and constrained energy minimization interpolation.
Numerical Linear Algebra with Applications 2006; 13(9):771–788.

52. Niestegge A, Witsch K. Analysis of a multigrid Stokes solver. Applied Mathematics and Computation 1990;
35(3):291–303.

53. Elman H, Silvester D, Wathen A. Finite elements and fast iterative solvers: with applications in incompressible
fluid dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press: New York, 2005.

Copyright � 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:751–774
DOI: 10.1002/nla


